Image Classification with Rejection using Contextual Information
نویسندگان
چکیده
We introduce a new supervised algorithm for image classification with rejection using multiscale contextual information. Rejection is desired in image-classification applications that require a robust classifier but not the classification of the entire image. The proposed algorithm combines local and multiscale contextual information with rejection, improving the classification performance. As a probabilistic model for classification, we adopt a multinomial logistic regression. The concept of rejection with contextual information is implemented by modeling the classification problem as an energy minimization problem over a graph representing local and multiscale similarities of the image. The rejection is introduced through an energy data term associated with the classification risk and the contextual information through an energy smoothness term associated with the local and multiscale similarities within the image. We illustrate the proposed method on the classification of images of H&E-stained teratoma tissues.
منابع مشابه
A Review of Remote Sensing Image Classification Techniques: the Role of Spatio-contextual Information
This paper reviewed major remote sensing image classification techniques, including pixel-wise, sub-pixel-wise, and object-based image classification methods, and highlighted the importance of incorporating spatio-contextual information in remote sensing image classification. Further, this paper grouped spatio-contextual analysis techniques into three major categories, including 1) texture extr...
متن کاملPolarimetric Contextual Classification of PolSAR Images Using Sparse Representation and Superpixels
In recent years, sparse representation-based techniques have shown great potential for pattern recognition problems. In this paper, the problem of polarimetric synthetic aperture radar (PolSAR) image classification is investigated using sparse representation-based classifiers (SRCs). We propose to take advantage of both polarimetric information and contextual information by combining sparsity-b...
متن کاملPlant Classification in Images of Natural Scenes Using Segmentations Fusion
This paper presents a novel approach to automatic classifying and identifying of tree leaves using image segmentation fusion. With the development of mobile devices and remote access, automatic plant identification in images taken in natural scenes has received much attention. Image segmentation plays a key role in most plant identification methods, especially in complex background images. Wher...
متن کامل3D Classification of Urban Features Based on Integration of Structural and Spectral Information from UAV Imagery
Three-dimensional classification of urban features is one of the important tools for urban management and the basis of many analyzes in photogrammetry and remote sensing. Therefore, it is applied in many applications such as planning, urban management and disaster management. In this study, dense point clouds extracted from dense image matching is applied for classification in urban areas. Appl...
متن کاملFast and robust image matching using contextual information and relaxation
This paper tackles the difficult, but fundamental, problem of image matching under projective transformation. Recently, several algorithms capable of handling large changes of viewpoint as well as large scale changes have been proposed. They are based on the comparison of local, invariants descriptors which are robust to these transformations. However, since no image descriptor is robust enough...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.01287 شماره
صفحات -
تاریخ انتشار 2015